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Abstract

For crack growth along an interface between two adjacent elastic–plastic materials in a layered solid, the resistance

curve behaviour is analysed by approximating the behaviour in terms of a bi-material interface under small scale

yielding conditions. Thus, it is assumed that the layers are thick enough so that the extent of the plastic regions around

the crack tip are much smaller than the thickness of the nearest layers. The focus is on the effect of initial residual

stresses in the layered material, or on T-stress components induced during loading. The fracture process is represented

in terms of a cohesive zone model. It is found that the value of the T-stress component in the softer material adjacent to

the interface crack plays a dominant role, such that a negative value of this T-stress gives a significant increase of the

interface fracture toughness, while a positive value gives a reduction of the fracture toughness.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Resistance curves for interface crack growth have been analysed for a number of cases by using a co-
hesive zone model to represent the fracture process, while the surrounding material is represented as elastic–

plastic. Thus, Tvergaard and Hutchinson (1993) have studied crack growth between a ductile solid and a

rigid solid, and Tvergaard (2001) has considered a crack between dissimilar elastic–plastic solids. These

analyses for conditions of small scale yielding have accounted for mixed mode loading on the solid, and it

has been found that a significant contribution of mode II loading at the crack tip gives much higher fracture

toughness than that found when mode I loading dominates at the crack tip, in good agreement with

experimental observations (Cao and Evans, 1989; Liechti and Chai, 1992; O�Dowd et al., 1992).

The effect of a residual stress parallel to the crack plane has been studied by Tvergaard and Hutchinson
(1996) in an analysis of crack propagation along one of the interfaces between a thin ductile adhesive layer

and the elastic substrates that it joins. Related to this is the analysis of crack growth in a homogeneous solid
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with a T-stress (Tvergaard and Hutchinson, 1994a,b), which has shown that the model using a cohesive

zone in an elastic–plastic solid predicts the strongly increased fracture toughness in the presence of a

negative T-stress, that has been shown by experiments for homogeneous specimens under mode I loading

(Hancock et al., 1991), where the magnitude of the T-stress depends strongly on the specimen type and
geometry. Recently, Tvergaard (2002) has analysed the more idealised problem of crack growth along an

interface between an elastic–plastic solid and an elastic solid, where only a T-stress in the elastic–plastic

solid is accounted for. This preliminary study has shown that a stress component parallel to the interface

crack plane has a significant effect on the fracture toughness.

In the present analyses the materials on both sides of the interface are represented as elastic–plastic, and

stress components parallel to the interface crack plane are accounted for in both materials. The analyses,

carried out for an interface crack growing between two different materials, is considered a good approxi-

mation for a layered material as long as the layer thickness is much larger than the extent of the plastic
region at the crack tip. If the stresses parallel to the interface crack plane result from thermal contraction

mismatch between the layers, the signs of the stresses are opposite in neighbouring layers, and the relative

magnitudes of the stresses depend on the ratios of the layer thicknesses. The stresses can also result from the

specimen type and geometry, as is common for usual T-stresses, and the stresses can arise from a com-

bination of these effects. If the stress components in the crack growth direction result from thermal con-

traction mismatch, these stress components are equal to the transverse stresses, whereas the transverse

stresses are smaller for usual T-stresses, as resulting from plane strain conditions. Both levels of transverse

stresses are considered here, to show that the results differ only little. A parametric study is carried out for a
wide variety of ratios between the stresses in adjacent layers, as can result from residual stresses with

different ratios of the layer thicknesses, from T-stress effects, or from combinations of these.
2. Problem formulation

In the layered solid it is assumed that the layers are thick enough so that the extent of the plastic regions

around the interface crack tip are much smaller than the thickness of the nearest layer. Then, the problem

can be well approximated by a small scale yielding analysis for a crack growing between two different

materials, as illustrated in Fig. 1, where each material layer has initial residual stresses.

The elastic interface crack problem was solved long ago by many authors (e.g. England, 1965). Fol-

lowing the formulation of Rice (1988) (see also Tvergaard and Hutchinson, 1993), the crack has tractions
Fig. 1. Interface crack between two material layers, with different elastic–plastic properties in each material.
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acting on the interface, which are given in terms of the two stress intensity factor components, KI and KII,

by
r22 þ ir12 ¼ ðKI þ iKIIÞð2prÞ�1=2rie ð2:1Þ
Here, r is the distance from the tip, i ¼
ffiffiffiffiffiffiffi
�1

p
, e is the oscillation index
e ¼ 1

2p
ln

1� b
1þ b

� �
ð2:2Þ
and b is the second Dundurs� parameter
b ¼ 1

2

l1ð1� 2m2Þ � l2ð1� 2m1Þ
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where the shear moduli are l1 ¼ E1=ð2ð1þ m1ÞÞ and l2 ¼ E2=ð2ð1þ m2ÞÞ. The relation between the energy

release rate and the magnitude jKj of stress intensity factors is
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With a reference length L chosen to characterize the remote field, an L-dependent measure of mode

mixity w is defined by
tanw ¼ Im½ðKI þ iKIIÞLie�
Re½ðKI þ iKIIÞLie� ð2:5Þ
which reduces to the more familiar measure, tanw ¼ KII=KI, when e ¼ 0. The displacement components

associated with the singularity field, with amplitude jKj, are specified in Tvergaard and Hutchinson (1993).
The small strain linear elastic solution for the in-plane stress components containing the oscillating

singularity in r are denoted Rabðr; hÞ, as partly described by (2.1). With the effect of a T-stress, the in-plane

stresses near the crack tip are taken to be of the form
rab ¼ Rabðr; hÞ þ Td1ad1b ð2:6Þ
where ðr; hÞ are polar coordinates and dij is Kronecker�s delta. The second term in (2.6) gives the non-

singular T-stress, which can result from residual stresses due to the thermal contraction mismatch of the

two materials joined at the interface, as studied by Tvergaard and Hutchinson (1996). Alternatively, the

T-stress can result from the specimen type and geometry, as described in Hancock et al. (1991). In the latter

case the T-stress applied under plane strain conditions will result in a transverse stress r33 ¼ mT , whereas the
corresponding transverse stress will be r33 ¼ T if the T-stress results from thermal contraction mismatch

between the layers. In the case of self-equilibrating residual stresses, the sign of the stresses will be opposite

in the two types of layers and their relative magnitude will depend on the ratio of the layer thicknesses.
Most analyses here will consider r33 ¼ mT , but some results for r33 ¼ T are included to show that this does

not make much difference. The values of the T-stresses in the two material layers adjacent to the crack are

denoted T1 and T2, respectively.
Both material no. 1, above the cracked interface, and material no. 2, below the interface, are taken to be

elastic–plastic, with the true stress–logarithmic strain curve in uniaxial tension specified by
e ¼ r=E for r6 rY

ðrY=EÞðr=rYÞ1=N for rP rY

�
ð2:7Þ
Here, rY is the initial yield stress and N is the power hardening exponent, while E and m are Young�s
modulus and Poisson�s ratio, respectively. The tensile behaviour is generalized to multiaxial stress states



Fig. 2. Specification of traction–separation relation.
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assuming isotropic hardening and using the Mises yield surface. For material no. 1 the parameters are

denoted E1, m1, rY1 and N1, while material no. 2 has the material parameters E2, m2, rY2 and N2.

The fracture process is represented in terms of a cohesive zone model also used by Tvergaard and

Hutchinson (1993), which is a special version of a traction–separation law proposed by Needleman (1987)

and generalized by Tvergaard (1990). Here, dn and dt denote the normal and tangential components of the

relative displacement of the crack faces across the interface in the zone where the fracture processes are

occurring (Fig. 2), with critical values dcn and dct . A single non-dimensional separation measure is defined as

k ¼ ½ðdn=dcnÞ
2 þ ðdt=dct Þ

2�1=2, and the tractions drop to zero when k ¼ 1. With rðkÞ displayed in Fig. 2, a
potential from which the tractions are derived is defined as
Uðdn; dtÞ ¼ dcn

Z k

0

rðk0Þdk0 ð2:8Þ
The normal and tangential components of the traction acting on the interface in the fracture process

zone are given by
Tn ¼
oU
odn

¼ rðkÞ
k

dn
dcn

; Tt ¼
oU
odt

¼ rðkÞ
k

dt
dct

dcn
dct

ð2:9Þ
The peak normal traction under pure normal separation is r̂r, and the peak shear traction is ðdcn=d
c
t Þr̂r in a

pure tangential separation. The work of separation per unit area of interface is given by Eq. (2.8) with

k ¼ 1, and for the separation function rðkÞ in Fig. 2 the work is
C0 ¼
1

2
r̂rdcnð1� k1 þ k2Þ ð2:10Þ
It has been found by Tvergaard and Hutchinson (1992, 1993) that the two most important parameters

characterizing the fracture process in this model are C0 and r̂r, while the details of the shape of the sepa-

ration law are less important.

On the free crack surfaces, for x2 ¼ 0 and x1 < 0, zero tractions, T 1 ¼ T 2 ¼ 0, are prescribed, while on

the remaining part of the interface, x2 ¼ 0 and x1 > 0, the displacements and tractions are related by the

traction–separation law (2.9).
Based on (2.4) and (2.10) a reference stress intensity factor is defined as
K0 ¼
1� m21
E1

�
þ 1� m22

E2

��1=2
2C0

1� b2

� �1=2

ð2:11Þ
Here, K0 represents the value of jKj needed to advance the interface crack in the absence of any plasticity.
This value is independent of w since a potential is used to generate the relation of tractions to crack face
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displacements of the interface. A length quantity R0, which scales with the size of the plastic zone in ma-

terial no. 1 (when jKj ffi K0), is defined as
R0 ¼
1

3p
K0

rY1

� �2

¼ 2

3p
1� m21
E1

�
þ 1� m22

E2

��1
C0

ð1� b2Þr2
Y1

ð2:12Þ
While the mode mixity measure w refers to the distance L from the tip, it is natural to define a reference

measure of mixity, w0, based on the reference length R0. The relation between w0 and w is
w0 ¼ wþ e lnðR0=LÞ ð2:13Þ
3. Numerical solution

In the numerical analyses finite strains are accounted for, using a convected coordinate, Lagrangian

formulation of the field equations, in which gij and Gij are metric tensors in the reference configuration and

the current configuration, respectively, with determinants g and G, and gij ¼ 1=2ðGij � gijÞ is the Lagran-
gian strain tensor. The contravariant components sij of the Kirchhoff stress tensor on the current base

vectors are related to the components of the Cauchy stress tensor rij by sij ¼
ffiffiffiffiffiffiffiffiffi
G=g

p
rij. Then, in the finite

strain generalization of J2-flow theory discussed by Hutchinson (1973), an incremental stress–strain rela-

tionship is obtained of the form _ssij ¼ Lijkl _ggkl (e.g. see Tvergaard and Hutchinson, 1993).

The numerical solutions are obtained by a crack growth procedure as that used by Tvergaard and

Hutchinson (1993) and Tvergaard (2001). Thus, a finite element approximation of the displacement fields is

used in a linear incremental method, with a Cartesian coordinate system xi as reference. The solution is

based on the incremental principle of virtual work, with equilibrium correction terms applied. First the
non-singular T-stresses and the corresponding transverse stress components in the x3-direction are applied,

considering only T-stress levels well below those resulting in plastic yielding. Subsequently, the singular part
Fig. 3. Mesh used for some of the crack growth analyses.
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of the solution is applied incrementally by prescribing the appropriate displacement increments on the outer

boundary of the region analysed. During the initial part of the crack growth resistance curve an increment

of jKj is prescribed, but when jKj approaches its asymptote, a Rayleigh–Ritz finite element method

(Tvergaard, 1976) is needed to ensure a monotonic increase in displacement differences across the crack tip.
It is noted that full finite strain effects are accounted for so that crack tip blunting can be represented, and

this is important if the peak stress r̂r of the debonding model is near or above the maximum possible stress

during blunting.

An example of the mesh used for the computations is shown in Fig. 3. A uniform mesh region is used in

the range where crack growth is studied. The length of one square element inside the uniform mesh is

denoted D0, and the initial crack tip is located at x1 ¼ 0. The computations are carried out with 120 · 6
quadrilaterals in the uniform mesh along the interface. The elements used are quadrilaterals each built-up

of four triangular, linear-displacement elements. The outer radius of the region analysed is chosen to be
A0=D0 ¼ 80000, in order that the plastic zone size should not exceed A0=10. The J -integral (Rice, 1968;

Eshelby, 1970) is calculated at some stages of the deformation, to check agreement with the prescribed

value of jKj.
4. Results

In the analyses to be presented here the values of the material parameters for material no. 1 are taken to

be rY1=E1 ¼ 0:003, m1 ¼ 1=3 and N1 ¼ 0:1. For material no. 2 different values of the ratios E2=E1 and

rY2=rY1 are considered, while m2 ¼ 1=3 and N2 ¼ 0:1 are kept fixed. In the traction–separation law the

values dcn=d
c
t ¼ 1, dcn ¼ 0:1D0, k1 ¼ 0:15 and k2 ¼ 0:50 are used, and the peak stress is taken to be

r̂r ¼ 4:0rY1.

Computed crack growth resistance curves are shown in Fig. 4 for E2=E1 ¼ 2:0 and rY2=rY1 ¼ 2 in cases

where the mode mixity near the crack tip is specified by w0 ¼ 3:95�, and where the transverse stress is

r33 ¼ mT . It is seen that the values of the T-stresses have a very strong influence on the development of the

fracture toughness jKjR with the growth Da of the crack length. For T1=rY1 ¼ �0:5 and T2=rY1 ¼ 0:5 the
Fig. 4. Interface crack growth resistance curves for various values of T1 ¼ �T2, with rY1=E1 ¼ 0:003, r̂r=rY1 ¼ 4:0, E2=E1 ¼ 2,

rY2=rY1 ¼ 2, r33 ¼ mT and w0 ¼ 3:95�.



Fig. 5. Steady-state interface toughness as a function of the local mixity measure w0 for various values of T1 ¼ �T2, with

rY1=E1 ¼ 0:003, r̂r=rY1 ¼ 4:0, E2=E1 ¼ 2 and rY2=rY1 ¼ 2.

V. Tvergaard / International Journal of Solids and Structures 40 (2003) 5769–5779 5775
fracture toughness grows much larger than that found for T1 ¼ T2 ¼ 0, and for T1=rY1 ¼ 1:0 and
T2=rY1 ¼ �1:0 the toughness is noticeably smaller.

Curves of the steady-state fracture toughness jKjss=K0 vs. w0 are shown in Fig. 5 to illustrate the de-

pendence on the mode-mixity. The material parameters here are the same as those considered in Fig. 4, and

again the different curves correspond to different levels of the T-stresses. The solid curves are obtained by

taking the transverse stress to be r33 ¼ mT , and the points for w0 ¼ 3:95� on these curves are equal to the

peak values of the resistance curves shown in Fig. 4. The dashed curves in Fig. 5 are obtained by prescribing

the transverse stress r33 ¼ T . For all the curves in Fig. 5 the T-stresses in the two materials are taken to be

of opposite sign, but of equal absolute magnitude, as in Fig. 4. Material no. 1, with the lower initial yield
stress, experiences a much larger plastic zone than that in material no. 2, and therefore a negative T-stress in

material no. 1 gives a significant increase of the fracture toughness, while a negative T-stress in material no.

2 does not have this effect. It is noted that the dashed curves in Fig. 5 are a little below the solid curves, so

that the value r33 ¼ T for the transverse stress gives slightly lower fracture toughness, but the main con-

clusion here is that there is only little sensitivity to the different levels of r33=T considered here.

The resistance curves for r33 ¼ T were not shown in Fig. 4. But it is noted that they closely follow the

corresponding solid curves in Fig. 4 (for r33 ¼ mT ), falling slightly below in agreement with the difference of

the steady-state values at w0 ¼ 3:95� specified in Fig. 5.
The characteristic feature found in previous studies of interface crack growth (Tvergaard and Hutch-

inson, 1993; Tvergaard, 2001) that the minimum fracture toughness occurs at w0 ffi 0�, i.e. for mode I

conditions near the crack tip, is also seen in Fig. 5 for T1 ¼ T2 ¼ 0. Furthermore, as also found before, a

noticeable mode II contribution results in much increased fracture toughness. The same general charac-

teristics are found for all the curves in Fig. 5, but the minimum shifts towards negative values of w0 for

increasing negative values of T1, while the minimum for T1=rY1 ¼ 1:0 has shifted to the positive value,

w0 ffi 10�. It is noted that these features are rather similar to results found recently for an elastic–plastic

solid with a T-stress bonded to an elastic substrate with very high stiffness (Tvergaard, 2002).
The curves in Fig. 6 have been determined to obtain a parametric understanding of the effect of varying

the values of T1 and T2 relative to each others. These computations are carried out for w0 ¼ 3:95� and for

r33 ¼ mT , and the corresponding point on the curve for T1=rY1 ¼ �0:5 and T2=rY1 ¼ 0:5 in Fig. 5 appears



Fig. 6. Steady-state interface toughness for w0 ¼ 3:95�, and for T2 varying with T1=rY1 ¼ �0:5 or for T1 varying with T2=rY1 ¼ 0:5.

Interface characterized by rY1=E1 ¼ 0:003, r̂r=rY1 ¼ 4:0, E2=E1 ¼ 2 and rY2=rY1 ¼ 2, with r33 ¼ mT .
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on both curves in Fig. 6. However, one of the curves in Fig. 6 keeps T2=rY1 ¼ 0:5 fixed, while T1 is varied,
and the other curve keeps T1=rY1 ¼ �0:5 fixed, while T2 is varied. The latter curve shows rather little

sensitivity to variations of the value of T2, since the plastic zone in material no. 2, affected by T2, is much

smaller than that in material no. 1. On the other hand, the curve where T1 is varied shows a strong sen-

sitivity to these variations, as should be expected since the value of T1 has a strong influence on the size of
the plastic region in the softer material.

The curves in Fig. 7 show the steady-state fracture toughness jKjss=K0 vs. w0 for cases where E2=E1 ¼ 1

and rY2=rY1 ¼ 1:5, with r̂r=rY1 ¼ 4:0. As in Fig. 5 the values of the T-stresses in the two materials are taken
Fig. 7. Steady-state interface toughness as a function of the local mixity measure w0 for various values of T1 ¼ �T2, with

rY1=E1 ¼ 0:003, r̂r=rY1 ¼ 4:0, E2=E1 ¼ 1 and rY2=rY1 ¼ 1:5.



Fig. 8. Steady-state interface toughness for w0 ¼ 0�, and for T2 varying with T1=rY1 ¼ �0:5 or for T1 varying with T2=rY1 ¼ 0:5.

Interface characterized by rY1=E1 ¼ 0:003, r̂r=rY1 ¼ 4:0, E2=E1 ¼ 1 and rY2=rY1 ¼ 1:5, with r33 ¼ mT .
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to be of opposite sign, but of equal absolute magnitude. The curves show the same trends as those in Fig. 5

that the minima occur in the vicinity of w0 ¼ 0�, and that the steady-state fracture toughness increases

significantly when a noticeable mode II contribution is applied. Also, the location of the minimum shifts

towards a negative value of w0 when T1 < 0, while a positive value of T1 shifts the location of the minimum
to a positive w0. The solid curves in Fig. 7 correspond to taking the transverse stress as r33 ¼ mT , while the
two examples of dashed curves correspond to r33 ¼ T . As in Fig. 5 it is seen that the fracture toughness

shows only a slight sensitivity to the difference in the level of r33=T considered here.

Fig. 8 shows the effect of varying the values of T1 and T2 relative to each others, analogous to Fig. 6. Even

though the initial yield stress in material no. 2 is here only 1.5 times that in material no. 1, the plastic zone is

still much smaller in the substrate than in material no. 1. Therefore, the effect of varying T1 for a fixed value

T2=rY1 ¼ 0:5 is also here much larger than the effect of varying T2 for a fixed value T1=rY1 ¼ �0:5.
5. Discussion

The present studies for crack growth along an interface between two elastic–plastic materials in a layered

material consider a wide variety of combinations of the initial stresses in the material layers. These stresses

parallel to the interface plane, on which the crack is assumed to grow, can result from thermal contraction

mismatch, with the stress ratios dependent on the ratio of the layer thicknesses, or from T-stresses that
depend on the specimen type and crack depth, or from a combination of these, and therefore several

combinations of the initial stress values are of interest. Since the analyses are actually carried out for a bi-

material interface under conditions of small scale yielding, the approximation to a layered material is only

reasonable as long as the plastic region around the crack tip is much smaller than the thickness of the layer

in which it is contained.

The largest part of the plastic region at the crack tip occurs in the neighbouring layer that has the lowest

yield stress, and the T-stress component in this layer has a strong influence on the size of the plastic region

in the layer. Therefore, the results in the present paper show much similarity with resistance curve be-
haviour found for crack growth in a homogeneous solid with a T-stress (Tvergaard and Hutchinson,
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1994a,b), when comparison is made with values of the T-stress component in the more ductile layer, i.e. T1
in the present paper. Thus, a negative value of the ratio T1=rY1, approaching )1.0, gives a significant in-

crease of the fracture toughness, even if T2 is positive. On the other hand, a positive value of T1 gives some

reduction of the fracture toughness, which was not found for a homogeneous solid with a T-stress. A
similar effect of a positive T1 was found in a recent study for a crack growing between an elastic–plastic solid

and a very stiff elastic substrate.

Much focus has been given here to the fact that the non-singular stress components parallel to the crack

plane can have different origins. In a layered material such residual stresses would typically arise from

thermal contraction mismatch during cooling from the processing temperature, which would give stresses

of opposite sign in neighbouring layers. In that case the transverse residual stresses in the direction parallel

to the crack front are equal to the residual stress component in the crack growth direction in the same

material layer. On the other hand, when the T-stresses arise from the specimen type and geometry, during
loading, the transverse stresses are smaller. The results in the present paper show that the resistance curve

behaviour and the steady-state interface fracture toughness are not very sensitive to these differences in the

transverse stress.

A wide variety of combinations of the T-stresses, T1 and T2, in adjacent material layers has been con-

sidered in Figs. 6 and 8, by keeping the stress component in one of the material layers fixed while that in the

other material is varied. These analyses have been carried out for values of the mode mixity parameter w0

near 0�, so that the stress-state in the near vicinity of the crack tip is close to pure mode I loading. These

studies show that the interface fracture toughness is strongly affected by variations of the ratio T1=rY1 in the
softer material when the value of T2 is kept fixed. On the other hand, the figures also show that when the

value of T1 is kept fixed, there is quite low sensitivity to variations of the stress component T2 in the harder

material layer.

A noticeable feature of the curves on Figs. 5 and 7, showing the dependence of the interface fracture

toughness on the mode mixity, is that for a negative value of the T-stress in the softer material the minimum

of the fracture toughness moves towards a negative value of w0, while for a positive value of the T-stress in

the softer material the minimum moves towards a positive value of w0. From previous investigations it was

already known that in the absence of a T-stress the minimum of the fracture toughness occurs in the vicinity
of w0 ¼ 0�.
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