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Abstract

For crack growth along an interface between two adjacent elastic—plastic materials in a layered solid, the resistance
curve behaviour is analysed by approximating the behaviour in terms of a bi-material interface under small scale
yielding conditions. Thus, it is assumed that the layers are thick enough so that the extent of the plastic regions around
the crack tip are much smaller than the thickness of the nearest layers. The focus is on the effect of initial residual
stresses in the layered material, or on T-stress components induced during loading. The fracture process is represented
in terms of a cohesive zone model. It is found that the value of the T-stress component in the softer material adjacent to
the interface crack plays a dominant role, such that a negative value of this T-stress gives a significant increase of the
interface fracture toughness, while a positive value gives a reduction of the fracture toughness.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Resistance curves for interface crack growth have been analysed for a number of cases by using a co-
hesive zone model to represent the fracture process, while the surrounding material is represented as elastic—
plastic. Thus, Tvergaard and Hutchinson (1993) have studied crack growth between a ductile solid and a
rigid solid, and Tvergaard (2001) has considered a crack between dissimilar elastic—plastic solids. These
analyses for conditions of small scale yielding have accounted for mixed mode loading on the solid, and it
has been found that a significant contribution of mode II loading at the crack tip gives much higher fracture
toughness than that found when mode I loading dominates at the crack tip, in good agreement with
experimental observations (Cao and Evans, 1989; Liechti and Chai, 1992; O’Dowd et al., 1992).

The effect of a residual stress parallel to the crack plane has been studied by Tvergaard and Hutchinson
(1996) in an analysis of crack propagation along one of the interfaces between a thin ductile adhesive layer
and the elastic substrates that it joins. Related to this is the analysis of crack growth in a homogeneous solid
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with a T-stress (Tvergaard and Hutchinson, 1994a,b), which has shown that the model using a cohesive
zone in an elastic—plastic solid predicts the strongly increased fracture toughness in the presence of a
negative T-stress, that has been shown by experiments for homogeneous specimens under mode I loading
(Hancock et al., 1991), where the magnitude of the T-stress depends strongly on the specimen type and
geometry. Recently, Tvergaard (2002) has analysed the more idealised problem of crack growth along an
interface between an elastic—plastic solid and an elastic solid, where only a T-stress in the elastic—plastic
solid is accounted for. This preliminary study has shown that a stress component parallel to the interface
crack plane has a significant effect on the fracture toughness.

In the present analyses the materials on both sides of the interface are represented as elastic—plastic, and
stress components parallel to the interface crack plane are accounted for in both materials. The analyses,
carried out for an interface crack growing between two different materials, is considered a good approxi-
mation for a layered material as long as the layer thickness is much larger than the extent of the plastic
region at the crack tip. If the stresses parallel to the interface crack plane result from thermal contraction
mismatch between the layers, the signs of the stresses are opposite in neighbouring layers, and the relative
magnitudes of the stresses depend on the ratios of the layer thicknesses. The stresses can also result from the
specimen type and geometry, as is common for usual T-stresses, and the stresses can arise from a com-
bination of these effects. If the stress components in the crack growth direction result from thermal con-
traction mismatch, these stress components are equal to the transverse stresses, whereas the transverse
stresses are smaller for usual T-stresses, as resulting from plane strain conditions. Both levels of transverse
stresses are considered here, to show that the results differ only little. A parametric study is carried out for a
wide variety of ratios between the stresses in adjacent layers, as can result from residual stresses with
different ratios of the layer thicknesses, from T-stress effects, or from combinations of these.

2. Problem formulation

In the layered solid it is assumed that the layers are thick enough so that the extent of the plastic regions
around the interface crack tip are much smaller than the thickness of the nearest layer. Then, the problem
can be well approximated by a small scale yielding analysis for a crack growing between two different
materials, as illustrated in Fig. 1, where each material layer has initial residual stresses.

The elastic interface crack problem was solved long ago by many authors (e.g. England, 1965). Fol-
lowing the formulation of Rice (1988) (see also Tvergaard and Hutchinson, 1993), the crack has tractions
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Fig. 1. Interface crack between two material layers, with different elastic-plastic properties in each material.
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acting on the interface, which are given in terms of the two stress intensity factor components, K7 and Ky,
by

0o + 01y = (Ki + iKy) (2mr) ' 2r (2.1)

Here, r is the distance from the tip, i = v/—1, ¢ is the oscillation index

a:%ln (%) (2.2)

and f is the second Dundurs’ parameter
_ 1 (1= 2v2) — py(1 = 2v)
2 (1 =v2) 4 pp(1 = wy)

where the shear moduli are y; = E,/(2(1 +v;)) and p, = E»/(2(1 + v;)). The relation between the energy
release rate and the magnitude |K| of stress intensity factors is

G=1(1-p) Ll G Bl K", |K| = /K2 + K3 (2.4)
2 E, E, ’ ooV '
With a reference length L chosen to characterize the remote field, an L-dependent measure of mode

mixity ¥ is defined by

Il’l’l[(KI + iKH)LiE]
Re[(KI + iKH)LiS]

p (2.3)

tany =

(2.5)

which reduces to the more familiar measure, tany = Kj;/K;, when ¢ = 0. The displacement components
associated with the singularity field, with amplitude |K|, are specified in Tvergaard and Hutchinson (1993).

The small strain linear elastic solution for the in-plane stress components containing the oscillating
singularity in » are denoted Z,4(r, 0), as partly described by (2.1). With the effect of a T-stress, the in-plane
stresses near the crack tip are taken to be of the form

Oup = Zxﬁ(r, 6) + Tém(sw (26)

where (r,0) are polar coordinates and ¢;; is Kronecker’s delta. The second term in (2.6) gives the non-
singular T-stress, which can result from residual stresses due to the thermal contraction mismatch of the
two materials joined at the interface, as studied by Tvergaard and Hutchinson (1996). Alternatively, the
T-stress can result from the specimen type and geometry, as described in Hancock et al. (1991). In the latter
case the T-stress applied under plane strain conditions will result in a transverse stress o33 = vT, whereas the
corresponding transverse stress will be ¢33 = T if the T-stress results from thermal contraction mismatch
between the layers. In the case of self-equilibrating residual stresses, the sign of the stresses will be opposite
in the two types of layers and their relative magnitude will depend on the ratio of the layer thicknesses.
Most analyses here will consider a3; = vT, but some results for a3; = T are included to show that this does
not make much difference. The values of the T-stresses in the two material layers adjacent to the crack are
denoted 77 and 7>, respectively.

Both material no. 1, above the cracked interface, and material no. 2, below the interface, are taken to be
elastic—plastic, with the true stress—logarithmic strain curve in uniaxial tension specified by

8_{G/E for o <oy

(ov/E)(a/ay)""  for ¢ = ay (2.7)

Here, oy is the initial yield stress and N is the power hardening exponent, while £ and v are Young’s
modulus and Poisson’s ratio, respectively. The tensile behaviour is generalized to multiaxial stress states
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Fig. 2. Specification of traction—separation relation.

assuming isotropic hardening and using the Mises yield surface. For material no. 1 the parameters are
denoted E,, v;, ay; and N, while material no. 2 has the material parameters E,, v,, oy; and N,.

The fracture process is represented in terms of a cohesive zone model also used by Tvergaard and
Hutchinson (1993), which is a special version of a traction—separation law proposed by Needleman (1987)
and generalized by Tvergaard (1990). Here, , and J; denote the normal and tangential components of the
relative displacement of the crack faces across the interface in the zone where the fracture processes are
occurring (Fig. 2), with critical values d; and J;. A single non-dimensional separation measure is defined as
2= [(8a/85)" + (8,/6%)")"/%, and the tractions drop to zero when 2 = 1. With ¢(4) displayed in Fig. 2, a
potential from which the tractions are derived is defined as

B(5,,0) = & / o) di (2.8)
0

The normal and tangential components of the traction acting on the interface in the fracture process
zone are given by
0P a(4) 4y 0d  o(A) d, O

“‘aan_Ta_ﬁ’ T,=—= —n (2.9)

The peak normal traction under pure normal separation is ¢, and the peak shear traction is (0, /J;)¢ in a
pure tangential separation. The work of separation per unit area of interface is given by Eq. (2.8) with
/=1, and for the separation function ¢(4) in Fig. 2 the work is

Iy= %&52(1 — A+ A) (2.10)
It has been found by Tvergaard and Hutchinson (1992, 1993) that the two most important parameters
characterizing the fracture process in this model are I'y and &, while the details of the shape of the sepa-
ration law are less important.

On the free crack surfaces, for x> = 0 and x' < 0, zero tractions, T' = T? = 0, are prescribed, while on
the remaining part of the interface, x> = 0 and x' > 0, the displacements and tractions are related by the
traction—separation law (2.9).

Based on (2.4) and (2.10) a reference stress intensity factor is defined as

1= 1=/ 21, \"2
ko [L=vi, 2} ( ) 211
0 { E; E, 1_32 ( )

Here, K, represents the value of |K| needed to advance the interface crack in the absence of any plasticity.
This value is independent of ¥ since a potential is used to generate the relation of tractions to crack face
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displacements of the interface. A length quantity R, which scales with the size of the plastic zone in ma-
terial no. 1 (when |K| = Ky), is defined as

2 2 277!
Ro:i(ﬁ> :3[1 n ] VZ] lo (2.12)
3n JvY1 3n E1 EQ (1 — ﬁ )6%{1

While the mode mixity measure y refers to the distance L from the tip, it is natural to define a reference
measure of mixity, ¥, based on the reference length Ry. The relation between v, and ¥ is

Yo=Y +eln(Ry/L) (2.13)

3. Numerical solution

In the numerical analyses finite strains are accounted for, using a convected coordinate, Lagrangian
formulation of the field equations, in which g;; and G;; are metric tensors in the reference configuration and
the current configuration, respectively, with determinants g and G, and n;; = 1/2(G;; — g;;) is the Lagran-
gian strain tensor. The contravariant components t/ of the Kirchhoff stress tensor on the current base
vectors are related to the components of the Cauchy stress tensor ¢” by 7/ = \/G/g . Then, in the finite
strain generalization of J,-flow theory discussed by Hutchinson (1973), an incremental stress—strain rela-
tionship is obtained of the form i/ = L 3,, (e.g. see Tvergaard and Hutchinson, 1993).

The numerical solutions are obtained by a crack growth procedure as that used by Tvergaard and
Hutchinson (1993) and Tvergaard (2001). Thus, a finite element approximation of the displacement fields is
used in a linear incremental method, with a Cartesian coordinate system x’ as reference. The solution is
based on the incremental principle of virtual work, with equilibrium correction terms applied. First the
non-singular T-stresses and the corresponding transverse stress components in the x*-direction are applied,
considering only T-stress levels well below those resulting in plastic yielding. Subsequently, the singular part

x* 1
=1
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Fig. 3. Mesh used for some of the crack growth analyses.
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of the solution is applied incrementally by prescribing the appropriate displacement increments on the outer
boundary of the region analysed. During the initial part of the crack growth resistance curve an increment
of |K| is prescribed, but when |K| approaches its asymptote, a Rayleigh-Ritz finite element method
(Tvergaard, 1976) is needed to ensure a monotonic increase in displacement differences across the crack tip.
It is noted that full finite strain effects are accounted for so that crack tip blunting can be represented, and
this is important if the peak stress ¢ of the debonding model is near or above the maximum possible stress
during blunting.

An example of the mesh used for the computations is shown in Fig. 3. A uniform mesh region is used in
the range where crack growth is studied. The length of one square element inside the uniform mesh is
denoted A;, and the initial crack tip is located at x! = 0. The computations are carried out with 120x6
quadrilaterals in the uniform mesh along the interface. The elements used are quadrilaterals each built-up
of four triangular, linear-displacement elements. The outer radius of the region analysed is chosen to be
Ao/Ay = 80000, in order that the plastic zone size should not exceed 4,/10. The J-integral (Rice, 1968;
Eshelby, 1970) is calculated at some stages of the deformation, to check agreement with the prescribed
value of [K]|.

4. Results

In the analyses to be presented here the values of the material parameters for material no. 1 are taken to
be oy /E; =0.003, v =1/3 and N, = 0.1. For material no. 2 different values of the ratios E,/E, and
oyz/oy; are considered, while v, = 1/3 and N, = 0.1 are kept fixed. In the traction-separation law the
values d;/0; =1, o; = 0.1A;, A1 =0.15 and 4, = 0.50 are used, and the peak stress is taken to be
0= 4-00Y1-

Computed crack growth resistance curves are shown in Fig. 4 for £, /E; = 2.0 and oy,/ay; = 2 in cases
where the mode mixity near the crack tip is specified by ¥, = 3.95°, and where the transverse stress is
a3 = vT. It is seen that the values of the T-stresses have a very strong influence on the development of the
fracture toughness |K|; with the growth Aa of the crack length. For 77 /ay; = —0.5 and T»/oy; = 0.5 the

8 "
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6

Fig. 4. Interface crack growth resistance curves for various values of 7} = —T, with ay,/E; =0.003, ¢/0y; =4.0, E;/E; =2,
oy2/0y1 =2, g3 = vT and , = 3.95°.
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Fig. 5. Steady-state interface toughness as a function of the local mixity measure i, for various values of 7} = —T5, with
O'y[/El = 0003, &/GYI = 40, Ez/El =2 and 0'y3/0'y1 =2.

fracture toughness grows much larger than that found for 7} =7, =0, and for 7i/gy; = 1.0 and
T, /ay; = —1.0 the toughness is noticeably smaller.

Curves of the steady-state fracture toughness |K| /Ky vs. ¥, are shown in Fig. 5 to illustrate the de-
pendence on the mode-mixity. The material parameters here are the same as those considered in Fig. 4, and
again the different curves correspond to different levels of the T-stresses. The solid curves are obtained by
taking the transverse stress to be g3; = vT, and the points for , = 3.95° on these curves are equal to the
peak values of the resistance curves shown in Fig. 4. The dashed curves in Fig. 5 are obtained by prescribing
the transverse stress o33 = 7. For all the curves in Fig. 5 the T-stresses in the two materials are taken to be
of opposite sign, but of equal absolute magnitude, as in Fig. 4. Material no. 1, with the lower initial yield
stress, experiences a much larger plastic zone than that in material no. 2, and therefore a negative T-stress in
material no. 1 gives a significant increase of the fracture toughness, while a negative T-stress in material no.
2 does not have this effect. It is noted that the dashed curves in Fig. 5 are a little below the solid curves, so
that the value o33 = T for the transverse stress gives slightly lower fracture toughness, but the main con-
clusion here is that there is only little sensitivity to the different levels of o33/7 considered here.

The resistance curves for g;; = 7 were not shown in Fig. 4. But it is noted that they closely follow the
corresponding solid curves in Fig. 4 (for o33 = vT), falling slightly below in agreement with the difference of
the steady-state values at ¥, = 3.95° specified in Fig. 5.

The characteristic feature found in previous studies of interface crack growth (Tvergaard and Hutch-
inson, 1993; Tvergaard, 2001) that the minimum fracture toughness occurs at ¥, = 0°, i.e. for mode I
conditions near the crack tip, is also seen in Fig. 5 for 7} = 7, = 0. Furthermore, as also found before, a
noticeable mode II contribution results in much increased fracture toughness. The same general charac-
teristics are found for all the curves in Fig. 5, but the minimum shifts towards negative values of , for
increasing negative values of 7}, while the minimum for 7}/ay; = 1.0 has shifted to the positive value,
Y, =2 10°. It is noted that these features are rather similar to results found recently for an elastic—plastic
solid with a T-stress bonded to an elastic substrate with very high stiffness (Tvergaard, 2002).

The curves in Fig. 6 have been determined to obtain a parametric understanding of the effect of varying
the values of 7 and T, relative to each others. These computations are carried out for ¥, = 3.95° and for
a33 = vT, and the corresponding point on the curve for 71 /ay; = —0.5 and 7> /oy, = 0.5 in Fig. 5 appears
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Fig. 6. Steady-state interface toughness for 1, = 3.95°, and for 75 varying with 7} /6y, = —0.5 or for T} varying with 75 /oy, = 0.5.
Interface characterized by oy, /E, = 0.003, 6/ay, = 4.0, E;/E|, =2 and ay>/ay; = 2, with ¢33 = vT.

on both curves in Fig. 6. However, one of the curves in Fig. 6 keeps 7»/ay; = 0.5 fixed, while 7; is varied,
and the other curve keeps Ti/oy; = —0.5 fixed, while 7, is varied. The latter curve shows rather little
sensitivity to variations of the value of 7, since the plastic zone in material no. 2, affected by 75, is much
smaller than that in material no. 1. On the other hand, the curve where 7; is varied shows a strong sen-
sitivity to these variations, as should be expected since the value of 77 has a strong influence on the size of

the plastic region in the softer material.

The curves in Fig. 7 show the steady-state fracture toughness |K| /Ky vs. ¥, for cases where E,/E; = 1

and gy, /oy; = 1.5, with /oy, = 4.0. As in Fig. 5 the values of the T-stresses in the two materials are taken

Fig. 7. Steady-state interface toughness as a function of the local mixity measure i, for various values of T;
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Fig. 8. Steady-state interface toughness for y, = 0°, and for 75 varying with 7; /oy, = —0.5 or for T} varying with 7»/ay; = 0.5.
Interface characterized by oy /E; = 0.003, 6 /0y, = 4.0, E;/E, = 1 and gy, /oy = 1.5, with 33 = vT.

to be of opposite sign, but of equal absolute magnitude. The curves show the same trends as those in Fig. 5
that the minima occur in the vicinity of iy, = 0°, and that the steady-state fracture toughness increases
significantly when a noticeable mode II contribution is applied. Also, the location of the minimum shifts
towards a negative value of ¥, when 7; < 0, while a positive value of 7 shifts the location of the minimum
to a positive y,. The solid curves in Fig. 7 correspond to taking the transverse stress as o33 = vT, while the
two examples of dashed curves correspond to ¢33 = T. As in Fig. 5 it is seen that the fracture toughness
shows only a slight sensitivity to the difference in the level of o33/T considered here.

Fig. 8 shows the effect of varying the values of 7} and 75 relative to each others, analogous to Fig. 6. Even
though the initial yield stress in material no. 2 is here only 1.5 times that in material no. 1, the plastic zone is
still much smaller in the substrate than in material no. 1. Therefore, the effect of varying 7} for a fixed value
Ty /oy = 0.5 is also here much larger than the effect of varying 7 for a fixed value 7\ /gy, = —0.5.

5. Discussion

The present studies for crack growth along an interface between two elastic—plastic materials in a layered
material consider a wide variety of combinations of the initial stresses in the material layers. These stresses
parallel to the interface plane, on which the crack is assumed to grow, can result from thermal contraction
mismatch, with the stress ratios dependent on the ratio of the layer thicknesses, or from T-stresses that
depend on the specimen type and crack depth, or from a combination of these, and therefore several
combinations of the initial stress values are of interest. Since the analyses are actually carried out for a bi-
material interface under conditions of small scale yielding, the approximation to a layered material is only
reasonable as long as the plastic region around the crack tip is much smaller than the thickness of the layer
in which it is contained.

The largest part of the plastic region at the crack tip occurs in the neighbouring layer that has the lowest
yield stress, and the T-stress component in this layer has a strong influence on the size of the plastic region
in the layer. Therefore, the results in the present paper show much similarity with resistance curve be-
haviour found for crack growth in a homogeneous solid with a T-stress (Tvergaard and Hutchinson,
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1994a,b), when comparison is made with values of the T-stress component in the more ductile layer, i.e. T}
in the present paper. Thus, a negative value of the ratio 7; /oy, approaching —1.0, gives a significant in-
crease of the fracture toughness, even if 7; is positive. On the other hand, a positive value of 7; gives some
reduction of the fracture toughness, which was not found for a homogeneous solid with a T-stress. A
similar effect of a positive T} was found in a recent study for a crack growing between an elastic—plastic solid
and a very stiff elastic substrate.

Much focus has been given here to the fact that the non-singular stress components parallel to the crack
plane can have different origins. In a layered material such residual stresses would typically arise from
thermal contraction mismatch during cooling from the processing temperature, which would give stresses
of opposite sign in neighbouring layers. In that case the transverse residual stresses in the direction parallel
to the crack front are equal to the residual stress component in the crack growth direction in the same
material layer. On the other hand, when the T-stresses arise from the specimen type and geometry, during
loading, the transverse stresses are smaller. The results in the present paper show that the resistance curve
behaviour and the steady-state interface fracture toughness are not very sensitive to these differences in the
transverse stress.

A wide variety of combinations of the T-stresses, 77 and 75, in adjacent material layers has been con-
sidered in Figs. 6 and 8, by keeping the stress component in one of the material layers fixed while that in the
other material is varied. These analyses have been carried out for values of the mode mixity parameter v,
near 0°, so that the stress-state in the near vicinity of the crack tip is close to pure mode I loading. These
studies show that the interface fracture toughness is strongly affected by variations of the ratio 7} /gy, in the
softer material when the value of 75 is kept fixed. On the other hand, the figures also show that when the
value of 7] is kept fixed, there is quite low sensitivity to variations of the stress component 7; in the harder
material layer.

A noticeable feature of the curves on Figs. 5 and 7, showing the dependence of the interface fracture
toughness on the mode mixity, is that for a negative value of the T-stress in the softer material the minimum
of the fracture toughness moves towards a negative value of y,, while for a positive value of the T-stress in
the softer material the minimum moves towards a positive value of iy,. From previous investigations it was
already known that in the absence of a T-stress the minimum of the fracture toughness occurs in the vicinity
of y, = 0°.
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